MAYA – Applied Animation

Maya

Animation Research

dm4-5

dm4-6

dm4-7

Fluid Collision in Maya

Maya Applied Animation ~ Particle Motion Animation Final_Rendered_Stills

Rendered Stills from the Final Animation in Maya in the Applied Animation module at the University of Westminster

The animation consists of 4 sets of particle groups and each group has a set of 4 particles.

On each particle within the group there is a linear emitter. The particles have a timeline of 1000 frames applied for the movement. Also for the movement each group of 4 particles has a Newton Field applied to them with a radial field for the emmited particles.

There for the animation starts with 16 particles and ends with the 16 particles having emmited thousands of other smaller particles.

Further set Attributes responsible for the movement and multiplying of the particles are rotations and moved positions on the X-Y-Z Axis of the plane.

Important part in this animation is the Magnitude ( set at 10) and the Attenuation (set at 1.63) attributes throughout the animation.

Starting point position for the particle groups is (0.4, 0.-4, 4,0, -4,0) at the plane.

There is also an extra plane in transparent shade which has 2 turbulence fields attached. The turbulence fileds have minimal magnitude and attenuation factor for it’s slow deformation within the timeline of 1000 frames.

Rendered stills within the 1000 frames

Table

The table below shows the animation objects (particles, newton field etc) at the start of the animation [timeline at 0 frames] their initial position and their final position at the end of the animation [timeline at 1000 frames].

particle table

Maya Applied Animation ~ Evolving Ideas

Familiarizing with Maya dynamics effects. Based on the carried research, the following rendered stills show experimental effects applying dynamic fields and attributes which had potential to be controlled by sensors. Either by recording the sensor values and attributes or physically connecting sensors to Maya

Factors:

Gravity, Forces, Magnitude, Attenuation, Geo-Connector, Turbulence, Radials, Newton

Effects:

Fire

maya fire effect

Shatter Effecton a NurbsSphere

Expressions tested for Sensor use
float $sensor1 = sensorInput.sensor1;
float $upper = 0.5; / float $lower = 0.2;
if (($sensor1<=$upper)&&($sensor1>=$lower)){nurbsSphere1.rotateZ = $sensor1*10;}
Expression to drive goal weight of shatter1LatticeParticle from the goal weight attribute of nurbsSphere1.
for shatters 1-45:
if ( nurbsSphere1.shatter == 1)
{shatter1LatticeParticleShape.goalWeight[0] = nurbsSphere1.goalWeight;}
else
{shatter1LatticeParticleShape.goalWeight[0] = 1;}
test:nurbsSphere1.shatter= sensorInput.sensor2*10;

NurbsCone – Radial Force

2
if ( nurbsCone1.shatter == 1 ){ shatter27LatticeParticle }else {shatter27LatticeParticle{
Shape.goalWeight[0] = nurbsCone1.goalWeight;Shape.goalWeight[0] = 1;}
// Expression to force an update of the soft body shatter27LatticeParticle 
// while it is not visible.//
int $minX = shatter27LatticeParticle.boundingBoxMinX;

Other Animations tested with Sensor Inputs

paint_fx

Maya Applied Animation ~ Device Emerging Principle~ Development

Principle:

  • From previous sensor inputs tests ——->shatter——>particles.
  • Particles as the basis of the animation where more emphasis is spent on their movement entering the realms of cosmology. Particles are the most basic form of matter. They are attracted together by gravitational or electromagnetic forces.
  • Buttons to trigger animations on screen

Physical Model

Physical model would be required to adopt relatively complex witing and circuitry to potray electromagnetic forces. This could be adopted to show magnetic forces for the purpose of practicality, and therefore the concept is then evolved to therepresentation and manipulation of ‘non contact forces’.
The use of magnets to activate switches or button sensors to ultimately trigger a display of particles incorperating similar non contact forces.
Elements:
Pressure / Force, Magnetism, Contact Forces, Motion, Rotation, Practicality, Pivotal Mechanism, Aerodynamic Shape,Degree of Curvature, Surface Proportion
  • Model to incorporate pivotal mechanism to allow for an obvious movement governed by a magnet.
  • When  propping the device horizontally, a contact happens using a pivotal connection.
  • Problem encountered in trying to break the circuit.
  • Difficulty in keeping the weight distribution even after a connection has been made.
  • Rotating the device 90 degrees and only keep the touch sensors at the top.
  • A curved shape based around a pivot allows for the connection to be broken due to its self weight once the magnetic force is removed.
  • The aerodynamic shape also allows for a more efficient user navigation and can be utilized for a stronger interaction.
  • Force to be exerted as the surface area of the mechanism increases, given the assumption that the force is proportional.

A repelling force is exerted by reversed polarisation achieved with a magnet attached to the surface of the device and a mirroring orientation of another magnet in the hands of the user. In addition the curved shape  correlates with the curved motion path of the particle display adopted in the animation.

Arduino Board

arduinoSchematic

Development ~ Process

devicedevelopment-testing-pressure_pad_

Device ~ “MAKE”

devicedevelopment-devise make

Device ~ RENDERED STILLS

devicedevelopment-devise rendered stills

Device ~ “MADE”

devicedevelopment-devise made

+PR353NT@510N+

Vodpod videos no longer available.
more about “Maya Mocap Presentation_2“, posted with vodpod
Vodpod videos no longer available.
more about “Maya Mocap Presentation_1“, posted with vodpod
MOCAP PRESENTATION

”Final” Animation ~ Maya Animated Motion Particles + Emitters

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s